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ABSTRACT: Some larval fish species do not swim continuously but forage using intermittent locomotion pattern which consist 
of relatively high speed swimming interspersed by pauses. This type of locomotion is known as pause-travel. In this paper, a 
mathematical model that examines the advantages of pause-travel over continuous swimming is developed. The results of the 
present calculations show that pause-travel is an efficient strategy to adopt over certain range of travel speeds. The results also 
show that the advantage of using this mode of swimming will increases as the size of the larva increases. 
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1  Introduction 
 
      Many species of fish such as Atlantic cod Gadus morhua do not swim continuously but 
forage following an intermittent locomotion pattern, consisting of bursts of relatively high speed 
swimming movements, interspersed with pauses when they scan the water column for prey (see 
[6, 13, 14]). Thus, the dynamics of intermittent locomotion consist of movement in discrete units 
of time along with pauses, by means of which they adjust their behaviour to changing 
circumstances. This type of movement is known as pause-travel or burst-and-coast swimming 
pattern. 
      Numerous theoretical studies have shown that pause-travel swimming pattern is more 
efficient for fish than continuous swimming (see [23, 21, 19]). The analysis presented by these 
authors revealed that this strategy is associated with large energy savings of over 50% as 
compared to continuous movement and that the advantage increases with size. According to 
these reports, fish larvae do not share the advantage of pause-travel swimming, due to the 
dominant influence of water viscosity at small Reynolds numbers. However, this conclusion 
fundamentally deviates from experimental studies which show that pause-travel is commonly 
observed in numerous species of larval fish. Example of larval species following the pause-travel 
strategy include the white crappie (pomoxis annularis), the Golden shiner (Notemigonous 
Crysolecus), the Atlantic cod larvae (Gadus morhua), see [4, 10, 6, 12, 15] for details. The 
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fundamental assumption made by these authors in their formulations is that the Reynolds 
numbers base on the animals scale is above 1000. With this assumption, their models were 
formulated for the energy expenditure needed to overcome drag at high Reynolds number which 
is independent of viscosity. Reports by [20, 17] have shown that the dynamics of pause-travel 
involves both inertial and viscous components. Other factors affecting pause-travel are 
temperature of the flow regime and the age of the larva (see [11]).  
      This paper examines the possible advantages of pause-travel motion by fish larvae over 
continuous swimming at constant speed. Specifically, a new energy saving function (ratio of the 
energy required to cover a given distance using pause-travel to the energy require to cover the 
same distance by swimming continuously) that is valid over a wide range of Reynolds number 
will be derived analytically. Since temperature is inversely proportional to viscosity, the 
influence of the former on the saving function will be investigated indirectly through changes in 
the former. Consequently, the model that will be developed here will be dependent on body size 
of the larva and the water viscosity. Through the consideration of the energy saving function it is 
possible to determine theoretically the range of travel speeds over which pause-travel is more 
advantageous over swimming at constant speed.  
 

2  Model formulation 

 

The equation of motion for a swimming larvae producing thrust 
m

T  is (see [19])   

 ,= forcedrag
dt

dv
MT P

m
+  (1) 

 
where M  is the mass of the larvae. Equation (1) was used by [23, 19] using drag force that is 
independent of viscosity. In this paper, we wish to derive an equation that is made up of both the 
inertial and the viscous forcing. 
     Consider a fish larva moving at constant direction and depth. The larva must overcome 
resistance due to drag force which can be written (see [23]) as   

 ,
2

1
= 2

PDwF
vCAD ρ  (2) 

 where wA  is the frontal area, ρ  is the density of the fluid, DC  is the drag coefficient and 

)(= tvv PP  is swimming speed. This force actually depend upon the Reynolds number regime. 

Weihs 1986 classify the Reynolds number base on body length )( LRe  into three regimes   

    • 301 ≤≤ LRe  is called the viscous region, where viscosity dominate the inertial forcing.  

 

    • The inertial regime is defined as the regime where 200.>LRe   

    • In between the viscous and the inertial regime is refer to as the intermediate regime.  
 

      In this region there is a gradual transition from viscous to inertial regime as LRe  increases.   

In the inertial regime, DC  is approximately constant (see [19]). However, in the viscous and the 

intermediate regimes DC  depends upon the Reynolds number (see [5]). For a 5 mm larva 

swimming with speed up to 10 mm/s in the viscosity regime of 6101= −×ν  m 2 s ,1−  we have 

50≤LRe  which places it into the intermediate Reynolds number regime. During the pausing 
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phase, the combination of the low swimming speed and small size might mean that the larva is 
within the viscous hydrodynamic regime. It is therefore reasonable to think that its environment 
is composed of both the viscous and the intermediate regimes. Vehagen [20] estimated the drag 
coefficient on a larval fish by representing the head as a sphere with diameter D  and the 
reminder of the body by splitter plate of height .D  He arrived at the following result which is 

valid for 200<<0 DRe    

 

 ,24
5

4
=

Dv
C

P

D

ν
+  (3) 

 

 where DRe  is the Reynolds number base on diameter. This result can be viewed as an estimate 

of passive drag. Experimental data have shown that the drag on a swimming body is greater than 

drag on a rigid body by a factor 1.>sα  For example, experimental measurement of drag on 

pause-travel fish larvae by [25] have shown that the drag coefficient is 0.242 during the travel 
phase and 0.06 during the pausing phase. Using equations  (3) and  (2) and the definition of 

23 =,/= LALM
w

πρ  for a sphere ( L  is length scale of the larva) we can write the drag force on a 

swimming larva as   

 ( ),= 2

tPPl
vvMF δλ +  (4) 

 where 
L

s
l

5

2
=

πα
λ  and .

6
=

2L

s
t

πνα
δ  Equation  (4) is a hybrid formula comprising of both the 

viscous and the inertial regimes. If Pv  is small the viscous term will dominate. Similarly if Pv  is 

large the inertial term dominate.  
      Swimming performance is widely accepted as a main character determining survival in many 
species of fish larvae and other aquatic animals (see [18]). It is also assumed that efficient 
swimming performance is closely related to larval ability to escape predators, find food or mate. 
The effects of different environmental conditions or pollutants on fish fitness or survival in an 
ecological system is usually evaluated by its critical (maximum sustained) swimming speed 

).(
crit

U  Measurements of 
crit

U  at different temperatures are available in literature (see [24, 8, 

7]). For example [24] reported 
crit

U  values for three different sizes of fish larvae (9, 13 and 17 

mm) at 15 and 20 o C. 
 
The results from Table 1 of that paper are summarised in Table 1 of this paper. The 

equation of motion of a fish larvae (see equation (1) ) is usually solved during the travel phase 
with the right hand side replaced by the maximum sustained thrust (see [19, 21]). For 
mathematical simplicity, the maximum sustained thrust during the travel phase of pause-travel 

behaviour is usually written in terms of .
crit

U   
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Table 1. Summary of experimental data for three size classes of larval fish at two temperatures. The table shows the 
critical swimming speeds at some temperatures. The data are extracted from Table 1 of [24]. 
 

Larval size (mm) Temperature (₀C) 
crit

U  (m s-1) 

9 15 63 

9 20 78 

13 15 73 

13 20 100 

17 15 87 

17 20 116 

 
 
 
In our formulation, the maximum sustained thrust can be written as   
 

 ( ).= 2

tcritcritlcrit UUMT δλ +  (5) 

 Thus, in our formulation we can write equation (1) in terms of 
crit

T  as   

 ( ) .=2

critPtPl
P TvvM

dt

dv
M δλ ++  (6) 

  

2.1  Formulation of the energy saving function 
 
The energy saving function can be described as the ratio of the energies require to cover a 

given distance using pause-travel ),(
sal

E  to the energy require to cover the same distance by 

continuous swimming using the same average swimming speed ).(
cru

E  More succinctly, the 

saving function can be defined as   

 .=
cru

sal

ratio
E

E
E  (7) 

 For pause-travel to be energetically more viable 1.<
ratio

E  If this turn out to be greater than one, 

then continuous swimming is more benefitting. The ratio is equal to one when the energy 
expenditure from both modes of swimming are the same. In order to formulate the energy saving 
function, the energy expenditures during the pause-travel and continuous swimming need to be 
defined. 
  

2.1.1  Formulation of )(
sal

E  

 

Suppose a larva is required to cover a distance d  in time 21= ttc +τ  by alternating a 

period of active swimming with powerless glide. In doing so, the distance 1l  is desired to be 

crossed within a time 1t  which will be assumed to be the travel phase. During the pause phase, 
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the larva is required to cover a distance 2l  in time .2t  In fulfilling this requirement no energy is 

expended during the pause phase because no thrust is produced (see [19]). Thus energy is 
expended during the travel phase only. The net energy expenditure during pause-travel can be 
defined as   

 .
1

=
1

0
dtvTE

Pcrit

t

cc

sal ∫τβ
 (8) 

 Here cβ  is the swimming efficiency which will be assumed constant (see [22]). Defining the 

energy in terms of 
crit

T  will impose higher energy demand on a larva than defining it in terms of 

its travel speed. The reason for writing the thrust in terms of the maximum sustained thrust is to 
reflect the cost of acceleration as a larva moves out of the low Reynolds number pause phase to 
the higher Reynolds number travel phase. Equation (8) can be written as   

 .=
1

0
dtv

T
E P

t

cc

crit

sal ∫τβ
 (9) 

 Note that the integral term in equation (9) is just the distance )( 1l  covered during the travel 

phase. So 
sal

E  becomes   

 .=
1

cc

crit

sal

lT
E

τβ
 (10) 

 
 

2.1.2  Formulation of )(
cru

E  

 
Suppose now the larva is allowed to take a different course of action to cross the same 

distance d  with a certain constant speed .=
21

21

tt

ll
vc

P
+

+
 The thrust )( cT  applied can be defined by   

 ( ),=
2

t

c

P

c

Plc
vvMT δλ +  (11) 

 we can then write the corresponding energy expenditure as   

 .=

2

21

21

3

21

21
























+

+
+









+

+
tl

c

cru
tt

ll

tt

llM
E δλ

β
 (12) 

 Therefore 
ratio

E  can be written as   

 
( )

( ) ( ) ( )
,=

21

2

21

3

21

2

211

tl

ratio
ttllll

ttAl
E

δλ ++++

+
 (13) 

 where ./= MTA
crit

 To calculate 
ratio

E  numerically, we need the expressions for 2121 ,, landltt  

that appear in equation (13) .  
 

2.2  Determination of 2121 ,, landltt  

 

To obtain explicit formulae for ,1t  ,2t  1l  and 2l  in terms of the other parameters, we shall 

use equation (6) for the travel phase. During the pause phase the thrust applied is zero and the 
equation can be solved by setting the right hand side equal to zero (see [23]). It will be assumed 



African Scientist Volume 11, No. 3 (2010) 

 176 

that 1= vv
P

 during travels and 2= vv
P

 during the pause phase, 1v  and 2v  are constants and that 

.21 vv ≠   

 

2.2.1  Determination of 11 landt  

 
More compactly, equation  (6) which can be written as   

 ( ) 0.=2 Avv
dt

dv
PtPl

P −++ δλ  (14) 

 
This equation has the general form   

 .))()(()()()(=
)( 2

210 tytftytftf
dt

tdy
++  (15) 

 

Equations having this general form are called Ricatti equations. The time and distance 11 landt  

can then be obtained by solving this equation subject to the condition that at .=0,= 2vvt
P

 There 

are many procedures for solving this type of equations. Perhaps the easiest in this case is to use 

the substitution 
( ) ( ) )/(=)( 2ftu

dt

tdu
ty −  (see [2]) which reduces the equation into second order 

linear   

 ( ) ( ) ( ) 0.=
2

2

tAutu
dt

d
tu

dt

d
lt λδ −+  (16) 

 
The solution of equation (16) is   
 

 ( ) ( ) ( )
,21=

1/21/2 tp
t

tp
t eCeCtu

−−+−
+

δδ
 (17) 

 

 where 21 CandC  are arbitrary constants and .41/2=
2

Ap lt λδ +  The solution of equation (14) 

can now be written as   
 

 
( ) ( )

( ) ,
3

1/231/2
=

l

ptpt

pt

t

pt

t
P

eCe

epCep
v

λ

δδ
−

−

+

−−++−
 (18) 

 

 where 1.2/=3 CCC  Now at .=0,= 2vvt P  This condition lead to   

 .
22

22
=3

2

2

lt

lt

vp

vp
C

λδ

λδ

++

−+−
 (19) 

 
 Substituting the expression for 3C  into equation (18) and simplifying we obtained   

 
( )

( ) ( )
( )

( ) ( )
,

coshsinh

sinh

coshsinh

cosh
=

2211 ptaptb

pt

ptaptb

pt
v

P
+

+
+

 (20) 
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 where 
( )

( )
( )
( )

.
2

2
=,

2

2
=,

2

2
=,1/=

2

2
2

2

2

2

2
121

vA

v
b

vA

p
a

pv

v
bva

t

tl

t

tl

δ

δλ

δ

δλ

−

+

−

+
 Applying the condition that 

at 11 =,= vvtt P  in equation  (20) we obtained the time required to cover the distance 1l  as   

 
( ) ( )
( ) ( )

.
2222

2222
ln1/2= 1

212

212
1

−










−−+++

−++−+
p

Avpvpv

Avpvpv
t

ttl

ttl

δδλ

δδλ
 (21) 

 

If equation  (20) is integrated with respect to time, the distance travelled 1l  can be obtained. Now 

(see [1])   

 
( )

( ) ( )

( )( )

( )( )














−

++−

−

+−

+
−

−

∫
ab

ab

baxbax

ba
ba

abxbax

dx
xaxb

x

>,
/tanhlnsinh

,>,
/tanhlncosh

=
coshsinh

cosh

22

1

22

1

 (22) 

 and   

 
( )

( ) ( )

( )( )

( )( )














−

+−

−

+

+
−

−

∫
.>,

/tanhlnsinh

,>,
/tanhlncosh

=
coshsinh

sinh

22

1

22

1

ab
ab

baxabx

ba
ba

bxabxa

dx
xaxb

x
 (23) 

 Comparing 1a  and 21, ab  and 2b  it can be seen that .>> 2211 baandba  Integrating equation  

(20) from 0=t  to 1= tt  by means of equations (22) and  (23) the distance covered )( 1l  during 

the travel phase is   
  
 
 

( ) 12

1

2

1
1

1

11
11111 tanhcoshln=

−−− −














































+− bap

a

b
ptbptal  

 ( ) 12

2

2

212

2

21
12 tanhcoshln

−
− −

































++ batb

a

b
pta  

 ( ) .1ln1/2
12

1

2

1
1

2

1

2

1
1

−
− −










−− bap

a

b
b  (24) 

  

2.2.2  Determination of 22 landt  

 
During the pausing, the thrust is zero and the drag coefficient is simply the passive drag. 

The equation of motion (6) becomes   
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 ( ) 0.=
1 2

PtPl

s

P vv
dt

dv
δλ

α
++  (25) 

 This is the Bernoulli equation. It is assumed that at the beginning of the pause phase, .= 1vvP  

The solution of the equation subject to this condition is then   

 .=

1

111

−














++− t

s

tt

l
s

tt

ltP evevvv δλλδ
α

δ

α

δ

 (26) 

 At the end of the pausing, .=,= 22 vvtt  This conditions enable us find the analytic derivation of 

2t  as,   

 
( )
( )

.ln=
1

12

21
2

−










+

+
ts

tl

lt

vv

vv
t δα

δλ

λδ
 (27) 

 The distance travelled )( 2l  during the pausing phase can be obtained by integrating equation  

(26) with respect to time, that is  

 ,=

1

111

2

0
2 dtevevvl t

s

tt

l
s

tt

lt

t

−














++−∫ δλλδ

α

δ

α

δ

 

 which is simplified to give   

 
( )
( )

( ) .lnlnln=
1

12

21

2

1
2

−











−








+

+
−







lt

tl

ltt
s

vv

vv

v

v
l λδ

δλ

λδδ
α  (28) 

 Inserting the expressions for 2121 ,, landltt  into equation (13) 
ratio

E  can be written in terms of 

speeds, larva size and viscosity. 
 

3  Results 

 

As stated earlier the numerical value of 
ratio

E  indicates the relative efficiency of pause-

travel and continuous swimming motions. If 1>
ratio

E  continuous swimming is more efficient. 

Equation  (13) will now be studied for various parameters involved. One contentious parameter 

in the equation is the ratio of swimming to pausing drag .sα  Weihs [23] used 2=sα  in his study 

of larval anchovy. However [21] believed that this parameter is greater than 2 and that the 

average value is around 3.3. Report by [25] for pause-travel koi larva show that 4.3.=sα   

The discussion in this paper mainly concern small fish larvae and so we are interested in 

obtaining values of 
crit

U  for fish larvae smaller than those listed on Table 1 Assuming that the 

crit
U  values listed on the Table are linearly related to larval size at a given temperature, we can 

estimate the critical swimming speeds of fish larva of length 5 mm at 15 and 20 o C as 50 and 60 
mm/s respectively. It now makes sense to set a lower limits for both pause and travel speeds. 
Newly hatched fish larvae are small in size, about 3.2 mm and swim with an average speed of 
0.25 mm/s (see [9, 8]). This value will be assumed to be the minimum value of the travel speed 
throughout. During the pausing phase, the larva will be assumed to have a swimming speed of 

0.001 mm/s. Variations of 
ratio

E  with travel speeds, sα  viscosity and the size of the larva will be 
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discussed below. 
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Figure 1. Variation of 
ratio

E  as a function of travel speed for a fish larva with size L = 5 mm, assuming Ucrit = 60 

mm/s, v2 = 0.001 mm/s, with the viscosity value ν= 1×10-6 m2 s−1 and drag ratios as shown. This corresponds to sea 
surface temperature of 20oC. These results are obtained by using equations (21), (24), (27) and (28) in equation (13). 
The Figure depicts the results for three different drag ratios: αs = 1 (– solid curve), αs = 2 (- - dash curve), and αs = 3 
(+ line). 

 
 

Figure 1 shows the variation in 
ratio

E  (energy required per unit distance in pause-travel 

motion to that required in steady speed swimming at the same average velocity) as a function of 
the travel speed. The calculations were made for three different drag ratio and viscosity regimes 

shown. In all the calculations the speed 0.001=2v  mm/s is assumed during the pausing phase. 

The viscosity value used is 6101= −×ν m 2 s 1− . This corresponds to sea surface temperature of 

20 o C (see [3]). The critical swimming speed used is 60=
crit

U  mm/s, this corresponds to a larva 

with size 5=L  mm. General observation of the Figure reveal that when the value of sα  is small, 

the gains are smaller and the region of travel speed for which pause-travel technique is useful 

becomes more limited. The result for drag ratio 1=sα  is represented with solid line, 2=sα  is 

represented with dashed (- -) line and 3=sα  is shown with + line. It can be seen that even when 

1,=sα  there is a range of possible travel speeds (about 0.7 to 4 mm/s) that will save energy 

( 1<
ratio

E ). Outside this range, continuous swimming become more efficient strategy. As for the 

other values of ,sα  pause-travel is most efficient over all range of swimming speeds considered 

here. However, the trend show a monotonic decrease in energy saving as the travel speed 

increases. The conclusion that can be drawn from this is that, for any value of 1>sα  pause-

travel is more efficient at certain range of low travel speeds. The range of these speed will 

increase with increasing .sα  The instinctive question arising here is which travel speed should a 

larva use, so as to minimize the energy expenditure during each cycle. Looking at the result it 
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can be seen that this minimum exist. Finding the minimum value analytically from equation  (13) 
will be extremely difficult.  
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Figure 2. Variation of 
ratio

E  as a function travel speed for a fish larva with size L = 5 mm, assuming a drag ratio αs 

= 2 at two different viscosity regimes shown. These results are obtained by using equations (21), (24), (27) and (28) 
in equation (13). The results for Ucrit = 60 mm/s in the viscosity regime ν = 1 × 10−6 m2 s−1 is the lower curve 
represented with solid (–) line. The middle and upper curves are the results for the same viscosity regimes ν = 
1.2×10−6 m2 s−1 and Ucrit = 60 mm/s (- - line), and Ucrit = 50 mm/s (+ line). 

 

Figure 2 shows the result of similar calculations of 
ratio

E  at two different viscosity and 

critical swimming speed values for a 5 mm long fish larva. The results for the viscosity regime 
6101= −×ν m 2 s 1− , 60=

crit
U  mm/s is the lower curve depicted with solid curve. The result from 

this shows that within two decimal places, the minimum value of 
ratio

E  is 0.35 with travel speeds 

in the range [1.45 1.55] mm/s. Also shown are the results for the viscosity regime     
6101.2= −×ν m 2 s 1−  at two different 50,60=

crit
U  mm/s. These are represented with dash  (- -) 

and + curves respectively. Comparing the upper (dash - -) and the lower (solid) curves we can 
see that viscosity does make a difference in optimal energy saving. Looking at the upper curve 
we can see to the left of the minimum point the low travel speeds ensure that viscous effects 
dominates. Hence continuous swimming is more efficient in this region. Gradually, as the travel 
speed increases up to about 3.5 mm/s pause-travel becomes more effective. The result on the 
lower curve show that pause-travel is more effective over all range of speeds shown. To the left 
of the minimum the low travel speed brings about relatively smaller gain in energy savings. 

General observations of the results show that pause-travel is more effective at 
intermediate travel speeds and that more energy is expended in a more viscous regime. We may 
argue that this conclusion does not hold because of the difference in critical swimming speeds in 
addition to viscosity. Critical swimming speed is widely recognized as a measure of fitness in 
both larva and adult fish and its value increases with larval size and decreases with viscosity (see 

[8, 24]). Assuming that the 
crit

U  is independent of viscosity, more calculations of 
ratio

E  were 

done at 6101.2= −×ν m 2 s 1−  and 60=
crit

U  mm/s, the results are presented as the middle (red +) 
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curve. However, even under this unrealistic assumption the conclusion remain the same as can be 
seen by looking at the lower (solid) and the middle (+) curves. This change in critical swimming 
speed reduces the difference between the upper and the lower curves by more than 50%, thus 
influencing the energy saving. For example, the maximum energy saving from the dash (- -) 

curve is 15% (corresponding to the minimum value of 0.85) at 1.85=1v  mm/s. From the + curve 

the maximum saving is 49% at the same speed. This implies that changing 
crit

U  has the effect of 

increasing the amount of energy savings. At the same temperature (viscosity) larger values of 

crit
U corresponds to increase in larval size. This might be interpreted to mean that larger larvae 

will be expected to be more efficient in pause-travel motion. In fact this supports the results of 

Hunter 1976, that at 18 o C three days old larval anchovy with size 4 mm are observed to spend 
only 20% of their time in pause-travel mode. When they do so, they do it with an average speed 
of 3.2 mm/s. As they grow older by two days, the are observed to spend 90% of their time in 
pause-travel mode. These findings support the 'safe harbour hypothesis' (see [16]) that fish 
larvae, instead of devising an optimal strategy for adapting to the viscous flow regime, increases 
their swimming speeds or sizes to escape into the inertia regime considered as a safe habour.  

 

4  Conclusion 

 
In this paper a new model of energy saving function was formulated. This function is 

basically the ratio of energies required to cover a given distance by pause-travel to the energy 

require to cover the same distance by continuous swimming. The function is denoted by 
ratio

E  

and it serves as a quantitative criterion indicating which mode of motions is more efficient. For 

values of 1<
ratio

E  pause-travel is more effective than continuous swimming. The expression for 

ratio
E  was formulated in terms of times spent in travel and pause modes and the distances 

covered during these periods. To calculate the numerical values of 
ratio

E  explicit formulae for 

the times and distances are required. To obtain these formulae, modified equation of motion was 
used. The modified equation was obtained by using drag coefficient that is made up of both the 
viscous and the inertial terms. This differs from other formulae in the literature which consist of 
either the inertial term or the viscous term only. Subsequently, the model was used to study the 

variation of 
ratio

E  with respect to travel speed, ratio of travel to pausing drag coefficient )( sα  

and changes in the viscosity of the flow regime. The main conclusions are as follows:   
 

1. Investigations with three different values of sα  show that the higher the value of this 

parameter, the larger the energy that will be saved by swimming using the pause-travel. 
The exact value of the parameter appear to be contentious in literature and so more 
experimental investigations are required to resolve this.  

2. The present study indicates that there exist a range of travel speeds over which continuous 
swimming is less effective than pause-travel. The range of these speed will be affected by 
viscosity.  

3. The range of travel speeds over which continuous swimming is less effective decreases 
with viscosity.  

4. The combination of size and enhanced swimming speed means that pause-travel is more 
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effective in larger larvae than smaller ones.  

 In summary, we can say that it is the complex interactions of size, temperature, that will 
determine to a large extent the survival and growth of small fish larvae. The combination of 
small size and low temperature will imply a reduce activity which limits the ability of a larva to 
find food.   
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