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ABSTRACT: When two planktonic microorganisms are in close proximity, the geometry of the surrounding flow 
field is distorted and this gives rise to hydromechanical disturbances. Copepods can sense these disturbances and 
utilize them to detect the presence of other microorganisms in the vicinity. In this paper we formulated a kinematic 
simulation model of prey detection by copepods under small scale turbulence. The results of our analysis have 
shown that the detection (contact) distance is a dynamic entity rather a fixed number. Furthermore, prey perception 
depends on relative orientations between predator and prey. 
 
 
 
1 Introduction 
 
     One can define an encounter (contact) between a planktonic predator and its prey as an event 
when the two microorganisms move to within a fixed distance (termed the contact radius) from 
each other [5]. Once they are within this distance, the predator can detect the presence of the 
prey. The detection technique could be visual, as in fish larvae, or chemical and 
hydromechanical signals (see [3, 16, 17, 4]). For a visual encounter, explicit geometrical 
representations of encounter scenarios such as positioning of the perception field (detection 
region) together with some physical insights into the encounter process allow for the 
development of encounter rates equations (see [5, 14, 9, 10, 8]). 
     The encounter scenario for hydromechanical perception does not conform to any specific 
geometry (see [2]). Experimental and theoretical investigations have shown that the ability to 
detect and react to hydromechanical signals is well developed in copepods (see [16, 17]). Their 
first antennae are adorned with array of hair-like setae which are highly sensitive to fluid motion 
(see [21]) and can sense the flow disturbance generated by other bodies in close proximity (see 
[17, 18, 21]). Although there exists a lot of evidence in support of the fact that copepods respond 
behaviourally to hydromechanical signals, it is not very clear which components of the fluid 
disturbance (fluid velocity, velocity gradient, fluid acceleration) they respond to. [15] reported 
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that for predators perceiving prey, the relevant signal strength is the absolute magnitude of the 
velocity. 
     The aim of this paper is to create a highly simplified model of planktonic encounter rates 
using hydromechanical signals as a means of detection. The simplest possible analytical model 
of this scenario is the case of two rigid spheres moving past each other in a viscous 
incompressible fluid. Using the solution of Stokes equations in bispherical coordinates and 
Kinematic simulation, a novel model will be formulated which will attempt to predict 
hydrodynamic signal emanating from a small microorganism as it moves through a fluid. The 
strength and range of this signal (with allowances made for attenuation arising from the presence 
of the background turbulence which need to be taken into account over larger distances) will 
then be utilized to estimate the possibility that the microorganism can be perceived by a potential 
predator.  
 
2  Formulation of the Encounter Rate Model 
 
      In this paper, the framework for planktonic predator prey interactions modelled as two rigid 
spheres moving in a viscous fluid will be formulated. These calculations will form the basis for 
investigations under small scale turbulence typically found in the habitat of planktonic copepods. 

  

 
 

Figure 1  Geometry of the encounter situation between a predator and prey showing typical antenna position and the 

contact angle (ω ). The contact distance is defined as ),(= IIIIII RRhhd +−+  where III RandR  are the 

predator and prey sizes respectively, HP and yy  are the position vectors of the of the predator and prey from 

some reference point ó respectively. 

y 

z 
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     Let two planktonic microorganisms be initially positioned at a distant d  apart. Geometrically 
this can be described as in Figure 3. The inherent bispherical nature of the problem suggests that 
it can best be tackled using a bispherical coordinate system ),,( φηξ  in which the governing 
equations and the boundary conditions can be accommodated relatively easily. In terms of 
cylindrical coordinates ),,,( φρ z  the bispherical coordinates are given by Damiano2004  
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 .20,<<,0 πφξπη ≤≤∞∞−≤≤  (2) 

 
      In this work, we shall assumed that the sphere above the plane 0=z  (see Figure 3) 
corresponds to Iξξ =  (the predator) with radius IR  and the sphere in the lower half plane 

corresponds to IIξξ −=  (the prey) with radius IIR  and that both III ξξ ,  are positive. The centre 

to centre separation between the two spherical bodies will be denoted by III hhD +=  where 
22

,
2
, = cRh IIIIII +  (see Figure 3). We assumed further that the predator has an antennae which are 

situated perpendicular to its direction of motion.  
 
2.1  Governing Equations and Solution 
 
      When considering the problem of prey perception in planktonic copepods by means 
hydromechanical signals in turbulent flow, the dynamic equations of the surrounding flow field 
around the two bodies are too complex to solve in detail. In lieu of the actual flow field, a 
simplified model that is valid at low Reynolds number could be adopted to estimate the signal 
strength in flows dominated by inertia. Even when swimming in a turbulent flow the dynamics of 
hydromechanical signalling is likely to be heavily influenced by the viscosity of the fluid, 
because over small distances (when two bodies get close together) viscosity is the determining 
characteristic of the background flow. So even though the global Reynolds number might be 
large, locally (that in the vicinity of the copepod's hydromechanical-receptors) it will be small 
enough to justify the application of a model based on the Stokes equations. Furthermore, the size 
of a sphere representing a predator used in the simulations is 3 310−×  m, the largest average 
swimming speed being 3.7 410−×  m .1−s  Thus, the Reynolds number, 1.12.≈eR  

      Suppose we wish to determine the velocity field in the vicinity of a planktonic predator and 
its prey as depicted in Figure 3. We assumed that the antenna does not alter the flow field and 
that the flow is sufficiently slow for the velocity field v  to satisfy the Stokes equations  
 

 ,=2 P∇∇ vµ  (3) 
 0=v⋅∇  (4) 

 
 where µ  is the dynamic viscosity of the fluid and P  the pressure field. The cylindrical 
components of the velocity fields satisfy the form (see [13, 1])   
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 where iW0  expressed explicitly in terms of bispherical coordinates are given by   
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     To solve equations (3) and (3), it suffices to determine the various constants 
i
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such that the equations are satisfied. These has been solved in bispherical coordinates to give a 
truncated infinite series. For full account of the solution see [1]. The solution is given by the 
system of equations (12) to ( (16) )  
 

 ( ) 1
1)0(

1
1)0(

1
0

0
1)0(

0
1)0(

0
0 2125=0 −

−
−

+
−

+− −−+++− nnnnnn AAAAnAnA  

 ( ) ( )( ) ( ) 0
0

1
1)0(

1
0 2121212 nnn AnAnnAnn ++++++− +  

 ( ) ( ) 1
1)0(

0
1)0(

0
1)0( 1122 −+− −−+−− nnn AnnAnnA  (12) 

  

 ( ) 1
1)0(

1
1)0(

1
0

0
1)0(

0
1)0(

0
0 2125=0 −

−
−

+
−

+− −−+++− nnnnnn BBBBnBnB  

 ( ) ( )( ) ( ) 0
0

1
1)0(

1
0 1221212 nnn BnBnnBnn +−++++− +  

 ( ) ( ) .1122 1
1)0(

0
1)0(

0
1)0( −+− −−+++ nnn BnnBnnB  (13) 

   

 ( ) ( ) ),,(cosh(
sinh

2
=),,( 0

0
0
0

,0
0

0
0 ξξλ

ξ
ξ BAUBA n

III
znn Λ−Λ  (14) 

 0.),
32

),,(1)(

12

),,( 0
0

0
01

0
0

0
01 ≥

+
Λ++

−
Λ+ +− n

n

BAn

n

BAn nn ξξ
 

   

 ( ) )),,((
sinh1)(2

1
=),,( ,

1
0
0

0
01

1
0

1
0

III
znnn UBA

n
BA −− −Λ

−
Λ λξ

ξ
ξ  (15) 



S. I. Bala 

 253 

 ( ) 1.),),,((
sinh3)(2

1 ,
1

0
0

0
01 ≥−Λ

+
− ++ nUBA

n
III

znn λξ
ξ

 

   

 ( ) )),,((
sinh1)(2

1)(
=),,( ,

1
0
0

0
01

1
0

1
0

III
znnn UBA

n

nn
BA −−

−− −Λ
−

+−Λ λξ
ξ

ξ  (16) 

 ( ) 1.)),,((
sinh3)(2

1)( ,
1

0
0

0
01 ≥−Λ

+
++ ++ nUBA

n

nn III
znn λξ

ξ
 

 

Here 1,10,==),,( 2

1

2

1

−+Λ







 +−






 +
ieBeABA

n
i
n

n
i
nn

ξξ
ξ  III

zU ,  are predator and prey speeds 
respectively and  

 ).
3212

(
2

1
=

||
2

3
||

2

1

+
−

−
−








 +−






 −−

n

e

n

e
nn

n

ξξ

λ  

 
 
     By solving the system of equations (12) to  (16) for the coefficients sA′  and sB′  the flow 
field in the surrounding the predator and prey is determined.  

 
3  Kinematic Simulation 
 
     KS is a Lagrangian model that can be used to track individual particles by following their 
trajectories. In this method, the turbulent flow is assumed to be homogeneous and isotropic and 
the velocity fields are simulated using a large number of Fourier modes (see [7, 9, 10, 8, 12]). 
The flow fields are constructed to satisfy the incompressibility condition but it is not require to 
satisfy the  Navier-Stokes equations . Rather, it seeks to generate flow regimes which mimic 
universal properties of turbulent flow on small scales without reference to any boundary 
condition that drive it. 
     One of the key parameters needed to construct KS flow fields is the rate at which the 
turbulent kinetic energy is dissipated into internal heat. This is commonly denoted by ,〉〈ε  the 
〈⋅〉  denote ensemble average. 
     The flow field constructed in this paper is based on the recipe of [9]. See the paper for full 
account of Ks and its construction. It suffices to say here that the rate of energy dissipation rate 
used in this work is 9105.53= −×〉〈ε  m2 s 3−  (see [20]).  
 
3.1  Model setup 
 
      To formulate the encounter rate model between planktonic predator and its prey in a 
turbulent simulation, we shall assumed that the predator has antennae which are always aligned 
perpendicular to its swimming direction. We shall also assumed that the relevant 
hydromechanical signals are detected at the tip of one of the antennae. To set up the model, the 
position of the antenna will be formulated first. 
Let the position vector of the prey and predator from some reference point ó be given by Hy  and 

Py  respectively. This set up is depicted on Figure 3 and the antenna position )( posA  can be 
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defined as   
 

 ,ˆˆˆ= antasIPHIpos lRh uuuA ++  (17) 

 
where PHû  is a unit vector, al  is the length of the antenna and sant and uu ˆˆ  are unit vectors. 

Having specify the antenna position, the relevant signal strength at its tip can be found. The unit 
vector antû  can be defined in spherical coordinates as   

 
 ( ),cos,sinsin,cossin=ˆ θφθφθantu  (18) 

 
where θφ ,  are the azimuthal and zenith angles respectively. To calculate the unit vector 
numerically, the azimuthal angle is randomly generated. Because the antenna is perpendicular to 
the swimming direction, we must have 0.=ˆ antP uv ⋅  If ( ),,,= z

P
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x
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a relation for θ  can be written as   
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Now the cylindrical coordinates zandρ  can be written in terms of the antenna position as 

follows. Let ( ).,,= z
pos

y
pos

x
pospos AAAA  Then From equation (1)   
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 Given any predator-prey separation ,d  the parameters III hhc ,,  can now be calculated. 
From equation (1) we obtained   
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 Using equation  (23) the following relations are obtained   
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 Using equation  (24) in  (22) a formula for calculating ξ  is obtained as   
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3.2  Relevant hydromechanical stimuli 
 
      When a predator and prey are in close proximity, the flow-field geometries are distorted, the 
extent of the distortion depending upon how far they are apart. The hydrodynamic disturbances 
can cause a deformations of the streamlines around the antennae of the predator, which can be 
perceived as hydromechanical signals. Various components of the fluid disturbance can 
potentially serve as a mechanical cue eliciting a reaction. In this paper, the signal strength due to 
velocity magnitude and the rate of deformation will be considered. 
 

The deformation rate and the velocity magnitude will be calculated using   

 ,
2

1

2

1

2

1
= 222222

zzzz eeeeee φρρφφφρρ +++++∆  (26) 

 ,= 222
φρ vvvs z ++  (27) 

 respectively. Here ,ρρe  ,φφe  ,zze ,zeφ ,ρze  and ρφe  are components of rate of stress tensor. 

Following [2] the signal strength *s  due to deformation can be defined by   
 ,=* ∆als  (28) 

 where al  is the length scale of the antenna. In what follows, the threshold signal due to rate of 
deformation and velocity magnitude are respectively assumed to be 0.2 and 0.04 mm/s (see [21, 
22]).  
 
3.3  Model execution 
 
     The simulation model is similar to those of [9, 11, 8] so that only the main differences will be 
highlighted here. The basic simulation domain is a cube with varying sides (initial size of each 
side of the domain is 0.5 m). The KS flow field was constructed within the simulation domain. 
Initially 512 prey and predators were introduced into the domain. The same number of predators 
was maintained throughout. We assumed that the prey particles were non-motile phytoplankton 
with size 4103 −× m. The second group with length scale 3103 −× mm was chosen to represent the 
predators (see [6]). We further assume that antenna length of the template predator was 

3102 −× m (see [18]). The number of prey and predators introduced into the domain initially were 
equal (512). This fixes the prey density at a value of 4.3512/0.53 ≈  per litre a reasonable value 
for the pelagic marine environment. The particles were initially distributed randomly throughout 
the domain, with no predator in contact with any prey (all positioned at distance greater than 12 
mm). 
      The predator particles were then assigned random walk swimming speeds drawn from three 
dimensional Gaussian distribution with zero mean and standard deviation ,Pσ  such that the 

collective swimming speed is HPHPv ,,

8
= σ

π
〉〈  ( 〉〈 HPv ,  are the average swimming speeds of 

predators and prey). This velocity in essence defines the predators'/prey direction of motion in 
the absence of any flow. 

A predator/prey may change its swimming velocity at certain fixed intervals during the 
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simulation. This interval time scale is denoted by .sightτ  The simulation has examined two kinds 

of search patterns. One of which is the case where the predator never change their direction of 
motions throughout a run of simulation ( ∞=sightτ ). The second case predators swims by 

changing direction every 2.7 seconds ( 0.2=sightτ ). The prey were assumed to be non-

swimming. The new innovation contained in the current model is the coupling of the two sphere 
model and the KS flow field.  

 
3.3.1  Registering contacts 
 
      Deciding whether a prey in the vicinity of a predator would actually be detected by the latter 
(and hence registered as a 'contact') requires that the signal generated by the former which 
propagates to the antenna tip should exceed the appropriate detection threshold. This decision 
making process was done in a subroutine called Conthresh. In summary, the determination of a 
contact using this routine involves the following steps.   
 
    1.  Using the predator and prey positions (inputs to the routine) the predator-prey separation 
( 1= dd ) was calculated. This was followed by the calculation of a unit vector antu  (see equation  

(18) ). The angle φ  was the generated randomly in ][0,2π  from Gaussian distribution with mean 
zero. This enables the calculation of the angle .θ   

    2.  Using 1d  the parameter values IIIIII ch ,, ,, ξ  were calculated and hence the antenna position.  

    3.  The cylindrical coordinates zandρ  were then calculated from equations  (20) and  (21) 
respectively and hence .,ηξ   

    4.  The angles ηξ and  were then calculated from equations  (25) and  (23) respectively.  

    5.  The subroutine twosphere is where the numerical evaluation of equations (12) to ( (16) ) 
were done. It returns the coefficients and importantly the signal strength 1s  to the subroutine 
Conthresh.  

    6.  Steps 1 to 5 were then repeated with distance 2= dd  to obtain the signal 2s  (when the 
predator and prey are more than 12 mm apart, this constitute the background signal/noise).  

    7.  The signal |=| 21 ssS −  was then compared with the threshold value (Th ). If ,> ThS  then 
CC='YES' is returned to the main routine and contact was registered otherwise no contact and 
CC='NO' is returned.  

 
      Whenever a contact has been designated, the angle (ω ) formed by the line joining the centre 
of the prey to the base of the predator's antennae was measured (see Figure 5). This is called the 
contact angle. Similarly, the distance (along the line of centres) between the surfaces of the 
predator and prey was also measured. This is called the contact distance.  
 
 
 
 



S. I. Bala 

 257 

 
4  Results and Discussion 
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Figure 2: Number of contacts, average contact distances, recorded for 2 groups of 512 predators against the 
swimming speeds for a signal based on the differences between velocity magnitudes. (a) Depicts the number of 

contacts for straight line swimmers (,∗  ∞=sightτ ) and random walk swimmers (+, 0.2=sightτ ). (b) Depicts the 

average contact distances recorded during the simulation against the predators' swimming speeds. The contact 
distances are the separation between the predator and prey on contact. 
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walk swim do not differ significantly. As Pσ  increases, the trajectories of the predators 
undergoing random walk become more and more convoluted as more time was spent re-tracking 
the same volume of fluid (see [19]). Hence, the divergence of contact rate for the two motility 
patterns. 
      Figures 2(b) and 3(b) show the average contact distances against the variances of swimming 
speed. Comparison of the two Figures also shows that the average contact distances do not differ 
so much when the different types of flow signal are employed. When swimming randomly 
predators can perceive prey at marginally greater distances than when they swim in straight lines.  
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Figure 4: Frequency histogram for contact angles arising from signals due to velocity magnitude in one run of 
simulations. These results are obtained by recording the angle ω  (see Figure 6) whenever contact occur between a 
predator and prey and using them to form the frequency histogram. (a) Depicts the results for the straight line 
swimmers (b) Shows the results for the random walk swimmers 
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  Figure 5: Frequency histogram for contact angles arising from signal strength due to rate of deformation, in one 
run of simulations. Other keys are the same as in Figure 5. (a) Depicts the results for the straight line swimmers (b) 
Shows the results for the random walk swimmers 
 
 
      Whenever any contact was designated to have occurred, the contact angle (see Figures 1 and 
6) was recorded. When the antenna is perpendicular to the line of centres and the predator is 
moving in the direction of decreasing 0.=,ωz  The angles were used to form a frequency 
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histogram as shown on Figures 4 and 5. These further serve to illustrate that planktonic particles 
perceived their prey at a range of different orientations. When a predator and prey approaches 
each other head on, the angle ω  is defined to be 0 .o  In all the Figures, more contacts were 
recorded in the range ]40[20, o  than any other relative orientation. Note that no contacts were 

recorded at 90 .o  As the relative orientation o90→  from either direction, the antennae moved 
further away from the scene of disturbance (see Figure 6).  
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Figure 6: Schematic diagram showing some possible range of the contact angle ω  which depend on the position of 
the antenna. When the antenna is perpendicular to the line of centres and the predator is moving in the direction of 
decreasing 0.=,ωz  However, when the antenna is perpendicular to the line of centres and the predator is moving 

in the direction of increasing .90=, oz ω  

 
 
      One observation that we can make from these results is that the number of contacts drops off 
to zero in the range ].120[60, o  This does not necessarily means that contacts cannot occur in 
those orientations. It is merely indicates that the net signals generated were not sufficient to rise 
above the threshold.  



African Scientist Volume 11, No. 4 (2010) 

 262 

0 20 40 60 80 100 120 140
0

0.2

0.4

0.6

0.8

1

1.2

1.4

CONTACT NUMBER

C
O

N
T
A
C
T
 D

IS
T
A
N
C
E

 
(a) 

 

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

CONTACT NUMBER

C
O

N
T
A
C

T
 D

IS
T
A

N
C

E

 
(b) 

Figure 7:  Stem plot for contact distance against the contact number. For example, the first contact in (a) occurred at 
a distance of 0.76 approximately. This is for signal strength due to velocity magnitude, in one set of the simulations. 
(a) Is for straight line swimmers while (b) is for random walk swimmers. 
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Figure 8: Stem plot for contact distance against the contact number. For example, the first contact in (a) occurred at 
a distance of 0.8 approximately. This is for signal strength due to deformation rate, in one run of simulations. (a) Is 
for straight line swimmers while (b) is for random walk swimmers. 
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     Figures 7 and 8 shows the stem plot illustrating the range of distances at which prey particles 
were perceived for the two different motility patterns during one run of simulation. The results 
were obtained by recording the first contact and the distance at which it occurred, the second 
contact and the distance at which it occurred and so on. The large variation across the distances 
suggest the existence of large error bars. The variations of the distances occur due to the 
differences in the strength of the signal as predator and prey move towards each other. Small 
distances are associated with low signals. When the signal strength is very high, the predator can 
detect the presence of the prey some considerable distance away. The averages of these distances 
over 10 runs of simulations at various speeds are depicted in Figures 2(b) and 3(b).  
 
5  Conclusion 
 
      In this paper, encounter rates for predators perceiving prey by hydromechanical signals in a 
turbulent flow were studied. The model framework for determining the signal generated by a 
small prey microorganism in the vicinity of a predator was constructed by employing methods 
originally designed to study the classical problem of two spheres of arbitrary sizes and speeds 
falling in Stokes flow. Extensions to the classical problem were made by adding sensory 
structures (antennae) to one of the spheres (predator). The new setting was then introduced into a 
small scale turbulent flow. The rate at which a group of such predators encounter their prey was 
then investigated using two forms of signal modalities. The main conclusions are as follows:   
 

1. The contact radius of a typical planktonic predator is not a fix constant. Predators can 
perceive prey over wide range of separation distances. This is in complete contrast to 
predators with spherically symmetric perception field, where, prey are perceived at an 
identical distance in all orientations.  

2. Prey perception tend to occur when the relative orientation between the predator and prey 
were in the range .]40[20, o   

3. Predators swimming by changing directions tend to perceives prey marginally further 
away than those swimming constantly in straight lines.  

4. Predators can perceive prey over wide range of separation distances.  

5. In almost all encounter rates studies in literature the perception field of planktonic 
predators is automatically assumed to be spherical. Here, more evidence were presented 
that the perception field of predators perceiving prey by hydromechanical signals is not 
spherical.  

6. The final conclusion is that predators perceiving prey by hydromechanical means are more 
sensitive to signals due to velocity magnitude than the deformation rates counterparts.  
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